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Abstract. We analyse the phase flow evolution of the torque free asymmetric gyrostat motion.
The gyrostat consists of a triaxial rigid body and a symmetric rotor spinning around one of
the principal axis of inertia of the gyrostat. The problem is converted into a two parametric
quadratic Hamiltonian with the phase space on theS2 sphere. As the parameters evolve, the
appearance–disappearance of centres and saddle points is originated by a sequence of pitchfork
bifurcations. When the gyrostat is axial symmetric, there are motions of the rotor that break the
degeneracy through an oyster bifurcation while other motions simply shift the degeneracy along
a minor circle.

1. Introduction

A gyrostat is a mechanical systemG composed by a rigid bodyP (platform) and other bodies
R (rotors) connected to it, in such a way that the motion of the rotors does not modify
the distribution of masses of the gyrostatG. This problem has been studied since the last
century for modelling the rotation of the Earth [1]. For details, the reader is addressed to
the book of Leimanis [2] and references therein.

More recently, the dynamics of the gyrostat, so-called dual-spin, has been an object of
interest in astrodynamics, and it is used, for instance, for controlling the attitude dynamics
of spacecrafts, and for stabilizing their rotations [3–10] and also [11] for further references.

The gyrostat in force free motion and with constant internal moments is an integrable
case, and its solution is given in terms of elliptic functions (see e.g. [12]). However, this
case is of great importance for it represents the unperturbed part of more complex models,
such as the heavy gyrostat, or the gyrostat in a Newtonian force field. Even this model may
represent nuclear physics problems [13] or optical problems, for instance, as it is proved by
Holm and co-workers [14, 15], the equations of motion for the Stokes polarization parameters
of a single optical beam in a nonlinear medium are analogous to the ones of the gyrostat.
Thus, the better will be our knowledge of this case, the more will be our understanding of
the perturbed problem.

It is well known that even in the torque free gyrostat motion, the phase flow depends
on the magnitude of the principal moments of inertia, on the rotor moments and on its
directions, and that some bifurcations occur. These bifurcations, or more precisely the
unstable points (saddle points), are the seeds of chaos [16] and some attempts have been
made in this direction of finding whether this model under some perturbations has chaotic
dynamics [17].
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In a recent paper, Tonget al [18] considered an asymmetric gyrostat, with constant rotor
moment along the biggest moment of inertia under the effect of the gravitational field, and
by making use of the Melnikov theorem [19], they prove that the motion is chaotic in the
sense of Smale’s horseshoes when the angular momentum of the rotor is small. In order to
apply the Melnikov theorem, one needs one homoclinic orbit of the unperturbed problem,
that is, the gyrostat in torque free motion. Tonget al [18] make use of the Serret–Andoyer
canonical variables to represent the phase flow, since they do not seem to be aware of the
fact that, since the total angular moment is preserved, the topology of the phase space is
of the sphereS2 (as it was already pointed out in [17, 20]) rather than the plane, and what
is even worse, for the case they choose, bifurcations occur precisely at the poles of theS2

sphere, that are singular points in the Mercator representation(`, L/G) they use.
The present paper aims to clarify what is the phase flow of an axial gyrostat in torque

free motion, depending on the spins of the rotors, that are considered as parameters. When
the gyrostat is asymmetric, the problem depends on two parameters, one for the principal
moments of inertia, and the second one for the rotor moment. It is shown (sections 4–
6) that when the spin of the rotor is along one axis of inertia, the phase flow bifurcates
on the intersection of these axes with theS2 sphere through a sequence of two pitchfork
bifurcations. In the case that the gyrostat is axially symmetric (section 7), the degeneracy
due to this symmetry is either broken through an oyster bifurcation or shifted to a minor
circle, depending on the spin axis of the rotor.

2. Integrals of the problem

Let us consider two orthonormal reference frames with originO at the centre-of-mass of
the gyrostat, oneS fixed in the spaces1, s2, s3 and the otherB, the body frameb1, b2, b3,
fixed in the body. The attitude ofB in S results in three rotations by means of the Euler
angles(φ, ϑ,ψ).

The nutation angleϑ (0 6 ϑ 6 π ) is defined by the dot product cosϑ = b3 · s3. The
vector l, the direction of the intersection of the space plane (s1, s2) with the body plane
(b1, b2), is obtained byl = s3 × b3/ sinϑ . This vector is related with the axes (s1, s2) by

l = cosφs1 + sinφs2 0 6 φ < 2π

where the angleφ, usually known as the precession angle, is the longitude of the nodel
reckoned from the space axiss1. By denotingψ (with 0 6 ψ < 2π ) the longitude of the
body vectorb1 reckoned from the nodel, this vector is expressed as the combination

l = cosψb1 − sinψb2.

By means of the composite rotation (see [21] for details)R = R(φ, s3)◦R(ϑ, l)◦R(ψ, b3),
the space frameS is mapped onto the body frameB, and by means of the differential ofR,

dR = dφ s3 + dϑ l + dψ b3 (1)

we are able to obtain the angular velocity. Indeed, letω be the angular velocity vector of
the frameB with respect to theS. This vector is

ω = φ̇s3 + ϑ̇l + ψ̇b3

and expressed in the body frame is

ω = ω1b1 + ω2b2 + ω3b3

and thus,

ω1 = φ̇ sinϑ sinψ + ϑ̇ cosψ ω2 = φ̇ sinϑ cosψ − ϑ̇ sinψ ω3 = φ̇ cosϑ + ψ̇.
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Let I1, I2, I3 be the principal moments of inertia of the gyrostat, that without loss of
generality we will assumeI1 < I2 < I3.

The angular momentum vectorG of the body in its rotation about the originO is
computed straightforward through its definition

G =
∑
i

miri × ṙi

and it results, when expressed in the body frame

G = g1b1 + g2b2 + g3b3

= (I1ω1 + h1)b1 + (I2ω2 + h2)b2 + (I3ω3 + h3)b3

= grb + h (2)

where the vectorh = h1b1 + h2b2 + h3b3 is the rotor momentum, that is to say, is the
moment of the relative motion of the rotors. Thus, the total angular moment is the sum
of two parts, the moment of the entire systemG considered as a rigid body (grb), plus the
moment of the relative motion of the rotors (h).

In a similar way, and by direct computation, one gets for the kinetic energy

T̃ = 1
2ω · grb + ω · h + Tr (3)

with Tr the kinetic energy of the rotor in its relative motion.
By applying the formula of the derivation with respect to a moving frame to the angular

momentum, there results the Euler equations

Ġ = ġrb + ḣ + ω × grb + ω × h = M (4)

whereM stands for the resulting moment of the external forces. In the absence of external
forces, the right-hand side of this equation vanishes, which means that the absolute derivative
of the angular momentum vector is zero, that is to say, this vector is constant in the space
frameS and consequently, its norm. But the norm of a vector is invariant under the action
of the SO(3) group,

‖G‖2 = g2
1 + g2

2 + g2
3 = (I1ω1 + h1)

2 + (I2ω2 + h2)
2 + (I3ω3 + h3)

2 = G2 = constant (5)

thus, the total angular momentum vector in the body frame describes a curve on theS2

sphere of radiusG
When the internal moment is constant (hi = constant,i = 1, 2, 3), and if there are no

external forces, equation (4) is reduced to

ġrb + ω × grb + ω × h = 0

and by making the dot product of this equation andω, the following expression yields

ġrb · ω = 0

and by integration,

1
2grb · ω = constant

which expanded in its components is,

1
2(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) = constant. (6)

One should note that in absence of external forces, the total kinetic energy (3) is not
conserved, but the kinetic energy of the gyrostat considered as a rigid body (6) is.
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In summary, the problem considered (let us recall that we are dealing with a gyrostat
with constant rotor moment and under no external forces) has two first integrals, the total
angular momentum

g2
1 + g2

2 + g2
3 = G2 = constant (7)

and the kinetic energy (6) of the rigid body, that expressed in the components of the total
angular momentum takes the form

T̂ = a1g
2
1 + a2g

2
2 + a3g

2
3 − 2a1g1h1 + a1h

2
1 − 2a2g2h2 + a2h

2
2 − 2a3g3h3 + a3h

2
3

where the coefficientsai are the inverse of the principal moments of inertia of the gyrostat;
therefore, for a given craft, they are fixed. Without loss of generality we will assume along
the paper thata1 > a2 > a3 > 0. Only when the gyrostat be assumed to have axial
symmetrya1 = a2 > a3 > 0 or a1 > a2 = a3 > 0. By transferring the constant terms
(
∑
aih

2
i ) of this expression to the left-hand side, we obtain

T = 1
2(a1g

2
1 + a2g

2
2 + a3g

2
3)− (a1g1h1 + a2g2h2 + a3g3h3). (8)

Thus, the phase flow will be made of the contour levels of the quadric (8) on the sphere
(7).

3. Hamiltonian of the problem

To build the Hamiltonian function, the classical way (see for instance [8, 18]) is to define the
conjugate moments of the three coordinates (the Euler anglesφ, ϑ,ψ) by taking the partial
derivatives of the Lagrangian function, and with it, compute the Legendre transformation of
the Lagrangian. Before computing the conjugate moments, we shall obtain the Hamiltonian.
The kinetic energy (3) is made of the addition of a pure quadratic term (1

2ω · grb) in the
velocities (and hence in the derivatives of the Euler angles), a linear part (ω · h), sinceh
does not depend on the Euler angles, and a pure function of the time (Tr(t)). By virtue of
the Euler theorem for homogeneous functions, and by denotingq = (φ, ϑ,ψ), the Legendre
transformation of the Lagrangian (the Hamiltonian) will be

L(L) = ∇q̇L · q̇ − L = ∇q̇(
1
2ω · grb) · q̇ + ∇q̇(ω · h) · q̇ − 1

2ω · grb − ω · h − Tr

= 1
2ω · grb − Tr

and since the relative kinetic energy is a function only oft , the Hamiltonian is

H = 1
2ω · grb

that expressed in terms of the components of the angular momentum vector in the body
frame coincides with equation (8), that is,H = T ,

H = 1
2(a1g

2
1 + a2g

2
2 + a3g

2
3)− (a1h1g1 + a2h2g2 + a3h3g3). (9)

The configuration space isSO(3) × T 3. (NB Although the Hamiltonian has been derived
in absence of external forces, the way followed still is valid when there are conservative
forces; the Hamiltonian would beH = 1

2ω · grb + V , with V the potential function.)
Instead of straightforwardly computing the conjugate moments, we will use the angular

momentum to overlay the symplectic structure. The new moments8, 2 and9 will satisfy
the differential identity

G · dR = 8 dφ +2 dϑ +9 dψ.
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Taking into account (1), there results that the moments are the projections of the total angular
vectorG onto the non orthonormal basiss3, l, b3, resulting

8 = G · s3 2 = G · l 9 = G · b3.

Hence, by inversion, there results

g1 =
(
8−9 cosϑ

sinθ

)
sinψ +2 cosψ

g2 =
(
8−9 cosϑ

sinθ

)
cosψ −2 sinψ

g3 = 9.

(10)

With these expressions, it is just a matter of computing derivatives to check that the Poisson
brackets satisfy

{g1; g2} = −g3 {g2; g3} = −g1 {g3; g1} = −g2. (11)

This Lie–Poisson structure was already found in [20].
Thus, so far, we have that the Hamiltonian (9) of the problem is quadratic in a set of

coordinates(g1, g2, g3) that generate anSU(2) algebraic structure. In these variables the
system has a singular noncanonical bracket tensor, and a conserved quantity, calledCasimir,
exists due to the degeneracy of the bracket. The topology of the phase space is defined by a
constant-energy sphere (Hopf sphere). This kind of problems, when the different parameters
vary, have been studied in detail in [22–25].

Let us now introduce the nondimensional quantities

(ξ1, ξ2, ξ3) = 1

G
(g1, g2, g3) (α1, α2, α3) = 1

G
(h1, h2, h3).

We may divide the Hamiltonian (9) by the non-zero quantityG2 = ‖G‖2. After this
division, and with the new quantities, there results

1

G2
H = 1

2(a1ξ
2
1 + a2ξ

2
2 + a3ξ

2
3 )− (a1α1ξ1 + a2α2ξ2 + a3α3ξ3).

By making a transformation of the independent variablet to a newtime τ by

τ = 1

G2
t

the Hamiltonian is converted into

K = 1
2(a1ξ

2
1 + a2ξ

2
2 + a3ξ

2
3 )− (a1α1ξ1 + a2α2ξ2 + a3α3ξ3) (12)

and the variables(ξ1, ξ2, ξ3) lie on the unit two-dimensional sphereS2

ξ2
1 + ξ2

2 + ξ2
3 = 1. (13)

Most information about the phase flow comes from the equilibria. To find the equilibria,
the first task is to obtain the equations of the motion. We did not express the Hamiltonian
in terms of moments and coordinates, but instead, we have all the information to obtain the
equations of the motion in terms of the components of the angular momentum. Indeed, by
recalling that the time derivative of a functionF along a Hamiltonian flowH is computed
as dF/dt = {F ; H}, and taking into account the structure of the Poisson brackets (11) one
easily has, by using the Hamiltonian (12),

ξ̇1 = {ξ1; K} = (a3 − a2)ξ2ξ3 + a2α2ξ3 − a3α3ξ2

ξ̇2 = {ξ2; K} = (a1 − a3)ξ1ξ3 + a3α3ξ1 − a1α1ξ3

ξ̇3 = {ξ3; K} = (a2 − a1)ξ1ξ2 + a1α1ξ2 − a2α2ξ1.

(14)
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Our interest is focussed on studying the behaviour of the phase flow for different values of
the internal moments (nowαi), that may be positive, negative or null. In this paper, we will
consider the axial gyrostatic problem, that is, the case when only one of these parameters
αi 6= 0. The remaining cases, either two or the three distinct of zero, will appear elsewhere.

4. Rotor with constant rotation around the smallest axis of inertia

In the case where the rotor has constant rotations about the smallest axis of inertia (b1), two
of the components of the relative angular momentum, namelyα2 andα3, vanish. By recalling
that the variablesξi lie on the sphereS2, after a simple time scaling, the Hamiltonian is
converted into

H = 1
2ξ

2
1 + 1

2Pξ
2
2 +Qξ1 (15)

whereP andQ are dimensionless parameters defined by

P = (a2 − a3)

(a1 − a3)
Q = −a1α1

(a1 − a3)
.

As it was remarked by Koiller [17], the metric (15) is left-invariant on the direct product
SO(3)× S1.

The equations of the motion corresponding to this Hamiltonian are

ξ̇1 = −Pξ2ξ3

ξ̇2 = (Q+ ξ1)ξ3

ξ̇3 = −(Q+ ξ1 − Pξ1)ξ2.

(16)

These equations present the symmetries

(ξ2, t) −→ (−ξ2,−t)
(ξ3, t) −→ (−ξ3,−t)

which indicate that the phase flow is time reversal symmetric respect to the planesξ2 = 0
andξ3 = 0. Consequently, equilibria, if any, must lie in these planes.

The Hamiltonian (15) is invariant by the transformation(ξ1,Q) −→ (−ξ1,−Q), which
means that it is sufficient to consider only non-negative values ofQ. Let us recall that for
Q = 0 the rotor moment vanishes and the problem is reduced to the rigid body.

We might proceed to analyse the phase flow and the possible bifurcations directly from
these equations of the motion. However, after all the transformations made, we manage
to put the Hamiltonian exactly as it was studied by Lanchares and Elipe [25], with the
difference that in our case, the parameterP is in the interval 0< P < 1, and that the
symplectic structure associated to the variables on the sphere(u, v,w) defined in [25] was

{u; v} = w {v;w} = u {w; u} = v.

We may overcome this handicap by counting the time in the reverse sign. Anyway, for
finding the equilibria, this fact has no influence since equilibria are obtained from the system
(16) by making zero the right-hand side in it.

At the extrema of this interval,P = 0 andP = 1, the platform is axial symmetric
(a2 = a3 or a2 = a1). These situations of axial symmetries will be analysed later on.

From the work of Lanchares and Elipe [25], for whateverP andQ > 0, the equilibria
are those appearing on table 1 in a set of generic coordinates(u, v,w) on the unit sphere,
that in the present case are related withξi by the mapping

(u, v,w) −→ (ξ1, ξ2, ξ3).
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Table 1. Equilibria, existence and value of the energy at the equilibria when there is only one
rotor.

Equilibrium point
in coordinates(u, v,w) Existence Energy

E1 ≡ (1, 0, 0) Always 1
2 +Q

E2 ≡ (−1, 0, 0) Always 1
2 −Q

E3 ≡
 Q

P − 1
,

√
1 − Q2

(P − 1)2
, 0


E4 ≡

 Q

P − 1
,−

√
1 − Q2

(P − 1)2
, 0




|Q| 6 |P − 1| −P + P 2 +Q2

2(−1 + P)

E5 ≡
(
−Q, 0,

√
1 −Q2

)
E6 ≡

(
−Q, 0,−

√
1 −Q2

)
 |Q| 6 1 − 1

2Q
2

Figure 1. Partition in the parametric planePQ for the Hamiltonian corresponding to only one
rotor. For internal rotations about the largest axis of inertiaP < 0; about the smallest one
0 < P < 1, whereas for rotations about the intermediate axis of inertia,P > 1. The numbers
2, 4, 6 stand for the number of equilibria in each region of the partition.

The conditions of existence of these equilibria determine a partition (figure 1) in the
parameter planePQ, and at points belonging to the same region in the partition, the phase
flow is similar, that is, the number of equilibria is the same, as well as their respective
stability. The separatrices of the partition are the lines of parametric bifurcation.

LetP be a number in the open interval(0, 1). Let us remind thatP = (a2−a3)/(a1−a3),
which means that for a given gyrostat, this number is fixed; and let us study the evolution
of the phase flow when the parameterQ = −a1α1/(a1 − a3) varies fromQ = 0 (a rigid
body) to a valueQ > 1.

For Q = 0 the rigid body has six equilibria (the intersections of the positive and
negative directions of the body frame with the sphere), four of them stableE1,2, E5,6 and
two unstableE3,4. From table 1, for 0< Q < 1 − P there are still six points, four
stableE1,2 = (±1, 0, 0) andE5,6 that are on the meridianξ1 = 0, but migrating towards
the point (−1, 0, 0), and two unstableE3,4, on the equatorξ3 = 0 and moving towards
E2 = (−1, 0, 0) asQ increases. Since the two unstable points have the same energy, these
points are connected by heteroclinic orbits.
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As soon asQ crosses the boundaryQ = 1 − P , this configuration is broken, for the
pointsE3,4 merge into the pointE2, a pitchfork bifurcation occurs, and there are only four
equilibria, three of them stable,E1 = (1, 0, 0) andE5,6 whereas the pointE2 = (−1, 0, 0)
has changed its stability and now is unstable. Let us remember theindex theoremfor vector
fields on manifolds:the sum of the indices of the fixed points equals the Euler characteristic
of the manifold(see e.g. [26, 27]). In our case, the Euler characteristic of the sphere is
two, and consequently, the number of stable points minus the number of unstable equilibria
must be equal to two). From this unstable point two homoclinic orbits spring, each one
encircling one of the stable pointsE5,6.

As Q approaches the valueQ = 1, these homoclinic orbits are collapsing towards the
pointE2, and atQ = 1, the two equilibriaE5,6 coincide withE2 that now becomes stable,
through a pitchfork bifurcation. ForQ > 1 the phase flow consists on rotations around the
two stable equilibriaE1 andE2.

5. Rotor with constant rotation around the largest axis of inertia

When the rotor is moving around the axisb3, the internal momentsα1 = α2 = 0, and thus,
the Hamiltonian (12) is reduced to

H = 1
2(a1ξ

2
1 + a2ξ

2
2 + a3ξ

2
3 )− a3α3ξ3.

Analogously to the preceding case, this Hamiltonian may be put in the form (15). Indeed,
taking into account that the variablesξi lie on the unit sphere (13), we may eliminateξ2,
and the Hamiltonian becomes

H = 1
2

(
(a1 − a2)ξ

2
1 + (a3 − a2)ξ

2
3

) − a3α3ξ3.

By defining the dimensionless parameters

P = a3 − a2

a1 − a2
< 0 Q = −a3α3

a1 − a2

and by making a time scaling transformation, the Hamiltonian for this case is

H = 1
2ξ

2
3 + 1

2Pξ
2
1 +Qξ3 (17)

that is to say it is equivalent to (15), since the variables appear in the same cyclic
permutation, which is necessary because of the structure of their Poisson brackets.

The equations of the motion corresponding to this Hamiltonian are

ξ̇1 = (Q+ ξ3)ξ2

ξ̇2 = −(Q+ ξ3 − Pξ3)ξ1

ξ̇3 = −Pξ1ξ2.

By defining now the mapping

(u, v,w) −→ (ξ3, ξ1, ξ2)

the equilibria, the domain where they exist and the energy at them are those appearing on
table 1.

To analyse the phase flow, we have to bear in mind that the parameter is nowP < 0.
From the partition of the parametric plane (figure 1), for a value ofP < 0 and when the
parameterQ (that is essentially the rotor moment) ranges from 0 toQ > |1−P |, the phase
portrait is completely analogous to the one described above for internal moment around the
axis b1, but now, the bifurcations take place around the point(0, 0,−1) rather than around
the point(−1, 0, 0).
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Figure 2. Energy plot at the equilibria for two cases (a) internal rotations about the smallest
axis of inertia (P = 0.4) (b) internal rotations about the largest axis of inertia (P = −0.4).
Broken curves represent unstable positions.

In the present case, for a given value ofP < 0, when 0< Q < 1, the points
E1 = (0, 0, 1), E2 = (0, 0,−1), E3,4 = (±

√
1 −Q2/(P − 1)2, 0,Q/(P − 1)) are stable,

whereas the pointsE5,6 = (0,±
√

1 −Q2,−Q) are unstable, and since the energy at these
unstable points is the same, they are connected by heteroclinic orbits. AsQ approaches
the valueQ = 1, the unstable points are moving towards the pointE2, and atQ = 1,
the three points (E5,6, E2) merge intoE2 that becomes unstable, and a second pitchfork
bifurcation occurs. ForQ approaching the value|1−P |, the stable pointsE3,4 are close to
the unstable equilibriumE2, and forQ = |1−P |, the three collapse intoE2, that becomes
stable through a pitchfork bifurcation.

6. Rotor with constant rotation around the intermediate axis of inertia

When there are only rotor moments around the intermediate axis of inertiab2, the two
remaining rotor moments areα1 = α3 = 0, and the Hamiltonian (12) is now reduced to

H = 1
2(a1ξ

2
1 + a2ξ

2
2 + a3ξ

2
3 )− a2α2ξ2.

Again, by using the constraint (13), we may eliminateξ1, and the Hamiltonian (after the
corresponding time scaling) becomes

H = 1
2ξ

2
2 + 1

2Pξ
2
3 +Qξ2 (18)

where the dimensionless parametersP andQ are now

P = a3 − a1

a2 − a1
> 1 Q = −a2α2

a2 − a1
.

This Hamiltonian (18) has the same form that the one studied by Lanchares and Elipe [25],
simply by making

(u, v,w) −→ (ξ2, ξ3, ξ1)

and restricting our analysis to the interval 1< P < ∞. The equilibria, and the domain
where they are defined are those of table 1. The phase flow when the parameterQ evolves
is depicted in figure 5.

From the partition of the parametric plane (figure 1), for a value ofP > 1, there
are either six, four or two equilibria in the phase flow, depending on which region the
parameterQ is. WhenQ < P − 1 andQ < 1, there are six equilibria; four of them
are stable:E3,4 = (0,Q/(P − 1),±

√
1 −Q2/(P − 1)2), E5,6 = (±

√
1 −Q2,−Q, 0); and



596 A Elipe et al

Figure 3. Phase portrait for internal rotations about the smallest axis of inertia (a1 = 1, a2 = 0.7,
a3 = 0.5 or P = 0.4) for several values ofQ. The left column is the view from the point
E1 = (1, 0, 0), the right column is the view from the pointE2 = (−1, 0, 0). The phase flow
evolution is made first through a pitchfork bifurcation atE2 for Q = 0.6 and secondly through
another pitchfork bifurcation atE2 for Q = 1.

the two remainingE1 = (0, 0, 1) andE2 = (0, 0,−1) are unstable (let us recall the index
theorem again). Since the energies at these two last points is different to one another, they
are not connected by a heteroclinic orbit, but from the pointE1 emanate two homoclinic
orbits encircling the pointsE3,4 whereas fromE2 emanate two homoclinic orbits encircling
the pointsE5,6.
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Figure 4. Energy plot at the equilibria for internal rotations about the intermediate axis of inertia
(a) P = 1.5 and (b) P = 2.5. Broken curves represent unstable positions.

Let us remember that forQ = 0 (that is to say, for the rigid body problem) there are
six points, four of them stable, the intersection of the sphere with the positive and negative
directions of the axesb1 andb3 (E5,6 andE3,4 in our notation) and two unstable (E1,2 at the
extrema of±b1), joined by two heteroclinic orbits. As soon asQ 6= 0 this configuration is
broken and the one described above appears, that we dubbedtennis ballconfiguration [28].

As Q increases, the lobes encircling the stable points shrink towards its respective
unstable points: pointsE3,4 move towardsE1 and pointsE5,6 move towardsE2. Depending
on the interval in whichP is located one pair of the stable points will arrive before the other
pair to the respective unstable point. If 1< P < 2, the pointsE3,4 will gain this particular
race and will collapse withE1 that now becomes stable through a pitchfork bifurcation;
whenQ reaches the lineQ = 1, the pointsE5,6 disappear inE2 through a second pitchfork
bifurcation and now there are only two stable points, and the phase portrait is made on
rotations around the pointsE1 andE2.

In contrast, ifP > 2, the situation is the reverse, that is, the first pitchfork bifurcation
occurs at the pointE2, for the E5,6 have arrived first atQ = 1; the second pitchfork
bifurcation occurs forQ = P − 1 > 1, where the stable pointsE3,4 merge intoE1, that
now becomes stable.

The caseP = 2 is special, in the sense that the two pitchfork bifurcations take place
simultaneously (forQ = 1), which could be deduced from the equations of the motion.

7. Cases of axial symmetry

It is well known that for the Euler Pointot motion of a rigid body axially symmetric, (for
instancea1 = a2 > a3), there are two isolated equilibria, namely the north and south poles,
and besides, a dense set of equilibria, for all the points of the equatorξ3 = 0 are equilibria;
there is a degeneracy.

One can easily visualize this fact by recalling that the phase flow of this problem is
made of the level contour of the energy ellipsoid (that is an ellipsoid of revolution)

H = 1
2a1(ξ

2
1 + ξ2

2 )+ 1
2a3ξ

2
3

on the momentum sphere

ξ2
1 + ξ2

2 + ξ2
3 = G2.

The manifold
1
2a1(ξ

2
1 + ξ2

2 )+ 1
2a3ξ

2
3 = h = 1

2a1G
2
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Figure 5. Phase portrait for internal rotations about the intermediate axis of inertia (a1 = 1,
a2 = 0.7, a3 = 0.5 or P = 1.6666) for several values ofQ. The left column is the view from
the pointE1 = (0, 1, 0), the right column is the view from the pointE2 = (0,−1, 0). The phase
flow evolution is made through two pitchfork bifurcations, one atE1 and the second one atE2.

is tangent to the sphere along the equatorξ3 = 0, thus, all points on this circle are equilibria.
The question now is whether the degeneracy will be preserved when a rotor spins about

one of the principal axis of inertia. The answer is that indeed, this degeneracy is kept,
but only when the rotor spins about the direction of the axis of symmetry of the gyrostat.
Otherwise, the degeneracy is broken through anoyster bifurcation [29].

Again, the phase flow of an axially symmetric gyrostat in free rotation motion is made
as the level contour of the energy ellipsoid (12) (where eithera1 = a2 > a3 or a1 > a2 = a3

and only one of theαi 6= 0 ) and the momentum sphere (13).
However, by adding one spinning rotor, the centre of the ellipsoid of the revolution is

shifted from the origin, that still is the centre of the sphere. Let us assume, for instance,
that the axis of symmetry is the axisb3. In this case, the ellipsoid is

H = 1
2a1(ξ

2
1 + ξ2

2 )+ 1
2a3ξ

2
3 − a3α3ξ3.
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This ellipsoid and the sphere are tangents along the small circleξ3 = −a3α3/(a−1−a3), and
therefore, each point belonging to this small circle is an equilibrium. Hence, the effect of
the rotor consists of a displacement of the circle of degeneracy along the axis of symmetry.

When the rotor is spinning about another axis (eitherb1 or b2), the centre of ellipsoid of
revolution is no longer the origin, but one point on the axis of symmetry, and consequently,
the ellipsoid cannot be tangent to the sphere; therefore, the degeneracy is broken.

Let us see it in detail.

Appendix A. Casea1 = a2 > a3

A.1. Rotor with constant rotation around the smallest axis of inertia

Whena1 = a2, the Hamiltonian (15) is reduced to

H = 1
2(ξ

2
1 + ξ2

2 )+Qξ1

since nowP = (a2 − a3)/(a1 − a3) = 1. The equations of the motion corresponding to this
Hamiltonian are

ξ̇1 = −ξ2ξ3 ξ̇2 = (Q+ ξ1)ξ3 ξ̇3 = −Qξ2.

For Q = 0, the pointsE5,6 = (0, 0,±1) are stable equilibrium points and besides, the
equatorξ3 = 0 is made of equilibria. However, as soon asQ > 0, the degeneracy is
broken. Indeed, of the infinity equilibria on the equator, only two equilibria remain, namely
the pointsE1 = (1, 0, 0) that is now stable, andE2 = (−1, 0, 0) that is unstable. The north
and south poles start their migration towards the stable pointE2 along the meridianξ2 = 0,
and now they are the stable pointsE5,6 = (−Q, 0,±

√
1 −Q2). Thus, the degeneracy

is broken through anoyster bifurcation; we may consider the two homoclinics as valves
hinging onE2, with the oyster closing its valves asQ tends to zero (see [29] for details).

As Q increases towards 1, the homoclinics and the equilibria inside them are
approaching the unstable pointE2 = (−1, 0, 0), and atQ = 1, a pitchfork bifurcation
happens, the three points merge intoE2 that now is stable, and forQ > 1, the phase
portrait is made of rotations around the axisb1.

A.2. Rotor with constant rotation around the intermediate axis of inertia

Whena1 = a2, andα1 = α3 = 0, α2 6= 0, the situation is analogous to the above studied.
The Hamiltonian (18) is of no utility, for in this caseP = +∞ (one of the extrema of the
definition domain ofP ), however, one can have the equations of motion straightforward
from the equations (14):

ξ̇1 = −(ξ2 +Q)ξ3 ξ̇2 = ξ1ξ3 ξ̇3 = Qξ1

where nowQ = −a2α2/(a1 − a3).
For Q = 0 the equilibria set is made of the pointsE5,6 = (0, 0,±1), that are stable,

and of the equatorξ3 = 0. Again, as soon asQ > 0, the degeneracy is broken through
an oyster bifurcation, but now, the hinging point isE4 = (0,−1, 0) that is unstable; its
oppositeE3 = (0, 1, 0) is stable, and the stable pointsE5,6 = (0,−Q,±

√
1 −Q2) tends

towards the unstable point asQ increases. AtQ = 1, the pitchfork bifurcation disappears
and there are only two equilibriaE3,4 that are stable, and the phase flow is made of pure
rotations around the axisb2.
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A.3. Rotor with constant rotation around the largest axis of inertia

In this case, we cannot use the Hamiltonian (17), for now the parameterP = −∞. However,
from (14) and by imposing thata1 = a2, andα1 = α2 = 0, α3 6= 0, we obtain the equations
of motion directly from the equations (14):

ξ̇1 = −(ξ3 +Q)ξ2 ξ̇2 = (ξ3 +Q)ξ1 ξ̇3 = 0

where nowQ = a3α3/(a1 − a3).
These equations have two stable equilibriaE5,6 = (0, 0,±1), plus all the points of the

minor circle ξ3 = −Q. Thus, in the present case, the degeneracy of the rigid body (the
equatorξ3 = 0) is not broken as it was in the precedent cases, but it is shifted along the
axis b3.

Appendix B. Casea1 > a2 = a3

When the symmetry is such thata1 > a2 = a3, the influence of the rotor is much analogous
to the previous case considered, and we do not repeat here. Let us say that in this case,
since the axial symmetry is along the axisb1, it is this axis who plays the role that the
axis b3 had above. For rotor moment around the axisb1 the degeneracy is maintained, but
shifted to the minor circleξ1 = Q = a1α1/(a1 − a3), whereas for internal moment around
eitherb2 or b3, the degeneracy is broken through an oyster bifurcation.
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