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Abstract. We analyse the phase flow evolution of the torque free asymmetric gyrostat motion.
The gyrostat consists of a triaxial rigid body and a symmetric rotor spinning around one of
the principal axis of inertia of the gyrostat. The problem is converted into a two parametric
quadratic Hamiltonian with the phase space on $fesphere. As the parameters evolve, the
appearance—disappearance of centres and saddle points is originated by a sequence of pitchfork
bifurcations. When the gyrostat is axial symmetric, there are motions of the rotor that break the
degeneracy through an oyster bifurcation while other motions simply shift the degeneracy along
a minor circle.

1. Introduction

A gyrostat is a mechanical systefrcomposed by a rigid bod® (platform) and other bodies

R (rotors) connected to it, in such a way that the motion of the rotors does not modify
the distribution of masses of the gyrostat This problem has been studied since the last
century for modelling the rotation of the Earth [1]. For details, the reader is addressed to
the book of Leimanis [2] and references therein.

More recently, the dynamics of the gyrostat, so-called dual-spin, has been an object of
interest in astrodynamics, and it is used, for instance, for controlling the attitude dynamics
of spacecrafts, and for stabilizing their rotations [3—10] and also [11] for further references.

The gyrostat in force free motion and with constant internal moments is an integrable
case, and its solution is given in terms of elliptic functions (see e.g. [12]). However, this
case is of great importance for it represents the unperturbed part of more complex models,
such as the heavy gyrostat, or the gyrostat in a Newtonian force field. Even this model may
represent nuclear physics problems [13] or optical problems, for instance, as it is proved by
Holm and co-workers [14, 15], the equations of motion for the Stokes polarization parameters
of a single optical beam in a nonlinear medium are analogous to the ones of the gyrostat.
Thus, the better will be our knowledge of this case, the more will be our understanding of
the perturbed problem.

It is well known that even in the torque free gyrostat motion, the phase flow depends
on the magnitude of the principal moments of inertia, on the rotor moments and on its
directions, and that some bifurcations occur. These bifurcations, or more precisely the
unstable points (saddle points), are the seeds of chaos [16] and some attempts have been
made in this direction of finding whether this model under some perturbations has chaotic
dynamics [17].
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In a recent paper, Torgt al [18] considered an asymmetric gyrostat, with constant rotor
moment along the biggest moment of inertia under the effect of the gravitational field, and
by making use of the Melnikov theorem [19], they prove that the motion is chaotic in the
sense of Smale’s horseshoes when the angular momentum of the rotor is small. In order to
apply the Melnikov theorem, one needs one homoclinic orbit of the unperturbed problem,
that is, the gyrostat in torque free motion. Toetgal [18] make use of the Serret—-Andoyer
canonical variables to represent the phase flow, since they do not seem to be aware of the
fact that, since the total angular moment is preserved, the topology of the phase space is
of the sphereS? (as it was already pointed out in [17, 20]) rather than the plane, and what
is even worse, for the case they choose, bifurcations occur precisely at the polesSéf the
sphere, that are singular points in the Mercator representétidry G) they use.

The present paper aims to clarify what is the phase flow of an axial gyrostat in torque
free motion, depending on the spins of the rotors, that are considered as parameters. When
the gyrostat is asymmetric, the problem depends on two parameters, one for the principal
moments of inertia, and the second one for the rotor moment. It is shown (sections 4—
6) that when the spin of the rotor is along one axis of inertia, the phase flow bifurcates
on the intersection of these axes with t§& sphere through a sequence of two pitchfork
bifurcations. In the case that the gyrostat is axially symmetric (section 7), the degeneracy
due to this symmetry is either broken through an oyster bifurcation or shifted to a minor
circle, depending on the spin axis of the rotor.

2. Integrals of the problem

Let us consider two orthonormal reference frames with ori@irat the centre-of-mass of
the gyrostat, on& fixed in the space;, s,, s3 and the othei3, the body frameb, b, bs,
fixed in the body. The attitude df in S results in three rotations by means of the Euler

angles(¢, o, V).

The nutation angle$ (0 < ¢ < x) is defined by the dot product cés= bz - s3. The
vectorl, the direction of the intersection of the space plasg £,) with the body plane
(b1, by), is obtained byl = s3 x bz/ sin®. This vector is related with the axes;( s;) by

l = cospsi + sings; 0<¢<2rn

where the angle, usually known as the precession angle, is the longitude of the hode
reckoned from the space axsg. By denotingys (with 0 < ¢ < 2r) the longitude of the
body vectorb; reckoned from the nodg this vector is expressed as the combination

Il = cosy b, — sinyrb,.

By means of the composite rotation (see [21] for detadls}y R(¢, s3) o R(#,1) o R(, b3),
the space framé& is mapped onto the body frant® and by means of the differential &,

dR =d¢p sz +dv 1+ dy bz Q)

we are able to obtain the angular velocity. Indeeddldte the angular velocity vector of
the frameB with respect to theS. This vector is

w=¢s3+ Ol + b3
and expressed in the body frame is
w = w1b; + wrby + w3bz
and thus,
w1 = ¢ sin® siny + & cosyr wy = ¢ sin® cosy — & sinyr w3 = ¢ COSY + V.
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Let Ih, I, I3 be the principal moments of inertia of the gyrostat, that without loss of
generality we will assumé; < I, < Is.

The angular momentum vectdF of the body in its rotation about the origi@ is
computed straightforward through its definition

G = Zmi'f‘[ X ’f’,‘
and it results, when expressed in the body frame

G = g1b1 + g2b2 + g3bs3
= (I1w1 + h1)by + (lawz + h2)bz + (Iswz + h3)bs
=g’ +h @)
where the vectoh = hib; + hobs + hsbs is the rotor momentum, that is to say, is the
moment of the relative motion of the rotors. Thus, the total angular moment is the sum
of two parts, the moment of the entire systéntonsidered as a rigid body’¢), plus the

moment of the relative motion of the rotorg)(
In a similar way, and by direct computation, one gets for the kinetic energy

f‘:%w-g’b+w-h~|—Tr 3)

with T, the kinetic energy of the rotor in its relative motion.
By applying the formula of the derivation with respect to a moving frame to the angular
momentum, there results the Euler equations

G=g"+h+oxg’"+oxh=M (4)

where M stands for the resulting moment of the external forces. In the absence of external
forces, the right-hand side of this equation vanishes, which means that the absolute derivative
of the angular momentum vector is zero, that is to say, this vector is constant in the space
frame S and consequently, its norm. But the norm of a vector is invariant under the action
of the SO (3) group,

IGI1? = 2 + g5 + g5 = (Ihwy + h1)? + (Iowy + h2)* + (Iswz + h3)*> = G? = constant (5)

thus, the total angular momentum vector in the body frame describes a curve 6 the
sphere of radiugs

When the internal moment is constant & constant; = 1, 2, 3), and if there are no
external forces, equation (4) is reduced to

g +oxg’+wxh=0
and by making the dot product of this equation asndhe following expression yields
grb cw=0
and by integration,
39"’ - © = constant
which expanded in its components is,
(o} + Lws + I;03) = constant (6)

One should note that in absence of external forces, the total kinetic energy (3) is not
conserved, but the kinetic energy of the gyrostat considered as a rigid body (6) is.
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In summary, the problem considered (let us recall that we are dealing with a gyrostat
with constant rotor moment and under no external forces) has two first integrals, the total
angular momentum

g2+ g2 + g2 = G? = constant 7

and the kinetic energy (6) of the rigid body, that expressed in the components of the total
angular momentum takes the form

T = a18? + axg3 + asg3 — 2a1g1h1 + arh? — 2asgohy + azh3 — 2asgahs + azh’

where the coefficients; are the inverse of the principal moments of inertia of the gyrostat;
therefore, for a given craft, they are fixed. Without loss of generality we will assume along
the paper thati; > a» > az > 0. Only when the gyrostat be assumed to have axial
symmetrya; = a; > az > 0 ora; > ap = az > 0. By transferring the constant terms
> a,-hiz) of this expression to the left-hand side, we obtain

T = %(alg% + axg5 + azgd) — (argih1 + axgoha + asgshs). (8)

Thus, the phase flow will be made of the contour levels of the quadric (8) on the sphere

(@).

3. Hamiltonian of the problem

To build the Hamiltonian function, the classical way (see for instance [8, 18]) is to define the
conjugate moments of the three coordinates (the Euler agglésy) by taking the partial
derivatives of the Lagrangian function, and with it, compute the Legendre transformation of
the Lagrangian. Before computing the conjugate moments, we shall obtain the Hamiltonian.
The kinetic energy (3) is made of the addition of a pure quadratic t(%zm- g™ in the
velocities (and hence in the derivatives of the Euler angles), a linear pat), sinceh

does not depend on the Euler angles, and a pure function of the Tira¢)( By virtue of

the Euler theorem for homogeneous functions, and by dengtiag¢, 9, ¢), the Legendre
transformation of the Lagrangian (the Hamiltonian) will be

LL)=ViL-g—L=ViGw-g")-q+V4w-h)-g—j0-g"—w-h—T,
= %w gt —T,
and since the relative kinetic energy is a function only afhe Hamiltonian is
H= %a) -g”

that expressed in terms of the components of the angular momentum vector in the body
frame coincides with equation (8), that i§,= T,

H = 3(a185 + azg5 + asg5) — (a1h1g1 + azhagz + ashags). 9)

The configuration space i$0(3) x T3. (NB Although the Hamiltonian has been derived
in absence of external forces, the way followed still is valid when there are conservative
forces; the Hamiltonian would b¥ = %a) -g"" + Vv, with V the potential function.)

Instead of straightforwardly computing the conjugate moments, we will use the angular
momentum to overlay the symplectic structure. The new momeéntd and ¥ will satisfy
the differential identity

G-dR =ddp + O dy + W dy.
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Taking into account (1), there results that the moments are the projections of the total angular
vector G onto the non orthonormal basis, I, bs, resulting

@ZG-Sg O=G-I qJ:G-b:g.
Hence, by inversion, there results

_(®— wcosy siny + © cosy
§1= sing
® — WU cosy . (10)
=(— """ ) cosy — ®sin
82 < sing ) v v
gs=".

With these expressions, it is just a matter of computing derivatives to check that the Poisson
brackets satisfy

{g1: 82} = —g3 {g2: 83} = —&1 {g3; 81} = —g2. (11)

This Lie—Poisson structure was already found in [20].

Thus, so far, we have that the Hamiltonian (9) of the problem is quadratic in a set of
coordinates(g1, g2, g3) that generate asU (2) algebraic structure. In these variables the
system has a singular noncanonical bracket tensor, and a conserved quantityCasiiei
exists due to the degeneracy of the bracket. The topology of the phase space is defined by a
constant-energy sphere (Hopf sphere). This kind of problems, when the different parameters
vary, have been studied in detail in [22-25].

Let us now introduce the nondimensional quantities

1 1
(sl’ $2s 53) = E(glv 82, g3) (alv a2, O53) = E(hls h27 h3)

We may divide the Hamiltonian (9) by the non-zero quantity = ||G|?. After this
division, and with the new quantities, there results

1
Gt = (@2 + artZ + aztd) — (ar0181 + aoks + azasts).

By making a transformation of the independent variable a newtime t by

1
T = Et
the Hamiltonian is converted into
K = 3(a167 + az63 + astl) — (ar01&1 + ara2€o + azasés) (12)
and the variablegz,, &, &) lie on the unit two-dimensional sphe&?
HE+&+e=1 (13)

Most information about the phase flow comes from the equilibria. To find the equilibria,
the first task is to obtain the equations of the motion. We did not express the Hamiltonian
in terms of moments and coordinates, but instead, we have all the information to obtain the
equations of the motion in terms of the components of the angular momentum. Indeed, by
recalling that the time derivative of a functidn along a Hamiltonian flowH is computed
as dr/dr = {F; H}, and taking into account the structure of the Poisson brackets (11) one
easily has, by using the Hamiltonian (12),

&1 = {&1; K} = (a3 — a2)&283 + aronés — azwzés

& = {&2; K} = (a1 — a3)163 + azazéy — ar1€3 (14)
£3 = {£3; K} = (a2 — a1)E162 + ar01E2 — arazéy.
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Our interest is focussed on studying the behaviour of the phase flow for different values of
the internal moments (now;), that may be positive, negative or null. In this paper, we will
consider the axial gyrostatic problem, that is, the case when only one of these parameters
a; # 0. The remaining cases, either two or the three distinct of zero, will appear elsewhere.

4. Rotor with constant rotation around the smallest axis of inertia

In the case where the rotor has constant rotations about the smallest axis of mgrtiaq

of the components of the relative angular momentum, nameindas, vanish. By recalling
that the variableg; lie on the spheres?, after a simple time scaling, the Hamiltonian is
converted into

H =362+ 3PE2+ 0t (15)
where P and Q are dimensionless parameters defined by
_ (az — az) _ Tmo
(a1 —a3) " (a1—a3)’
As it was remarked by Kaoiller [17], the metric (15) is left-invariant on the direct product
SO3) x St
The equations of the motion corresponding to this Hamiltonian are

&1 =—P&¥&3
£ = (Q +&1)& (16)

§3=—(0 +& — P&)é.
These equations present the symmetries

(62, 1) — (=62, —1)
(53’ t) — (_537 _t)

which indicate that the phase flow is time reversal symmetric respect to the glanec8
andé&; = 0. Consequently, equilibria, if any, must lie in these planes.

The Hamiltonian (15) is invariant by the transformati@n, Q) — (—£&1, —Q), which
means that it is sufficient to consider only non-negative valueg.oket us recall that for
0O = 0 the rotor moment vanishes and the problem is reduced to the rigid body.

We might proceed to analyse the phase flow and the possible bifurcations directly from
these equations of the motion. However, after all the transformations made, we manage
to put the Hamiltonian exactly as it was studied by Lanchares and Elipe [25], with the
difference that in our case, the parameteis in the interval 0< P < 1, and that the
symplectic structure associated to the variables on the sphevew) defined in [25] was

{u; v} = w fv;w}=u {w; u} = v.

We may overcome this handicap by counting the time in the reverse sign. Anyway, for
finding the equilibria, this fact has no influence since equilibria are obtained from the system
(16) by making zero the right-hand side in it.

At the extrema of this intervalP = 0 and P = 1, the platform is axial symmetric
(a> = a3 or ax = a;). These situations of axial symmetries will be analysed later on.

From the work of Lanchares and Elipe [25], for whateverand Q > 0, the equilibria
are those appearing on table 1 in a set of generic coorditatesw) on the unit sphere,
that in the present case are related vty the mapping

W, v, w) — (&1, &2, &3).
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Table 1. Equilibria, existence and value of the energy at the equilibria when there is only one
rotor.

Equilibrium point

in coordinatesu, v, w) Existence Energy
E1=(1,0,0) Always % +0
E; =(-1,0,0) Always 35— 0
0 02
E3= L 1= 2,0
(P—l (P-1) ) ol <ip-1 _P+ P24 Q2
2 = 2(-=1+P)
E4= 0 —.[1— 0 0
p-1 (P-12
Es=(-0.0,v1- 02) .
o<1 —30
Ee = (—Q,o,— 1— Q2>
Q
2 Q=P-1
2 /
4\ 4 0=t
6 e N\Ui* 6
p
=-1
pLi \ Q
Q=-P+l

Figure 1. Partition in the parametric planBQ for the Hamiltonian corresponding to only one
rotor. For internal rotations about the largest axis of ineRia< 0; about the smallest one
0 < P < 1, whereas for rotations about the intermediate axis of ineftia; 1. The numbers
2, 4, 6 stand for the number of equilibria in each region of the partition.

The conditions of existence of these equilibria determine a partition (figure 1) in the
parameter plané& Q, and at points belonging to the same region in the partition, the phase
flow is similar, that is, the number of equilibria is the same, as well as their respective
stability. The separatrices of the partition are the lines of parametric bifurcation.

Let P be a number in the open interv@, 1). Let us remind thaP = (ax—as)/(a1—a3),
which means that for a given gyrostat, this number is fixed; and let us study the evolution
of the phase flow when the parame@r= —aj1/(a1 — a3) varies fromQ = 0 (a rigid
body) to a valueQ > 1.

For 0 = 0 the rigid body has six equilibria (the intersections of the positive and
negative directions of the body frame with the sphere), four of them sté&ble Es ¢ and
two unstableEs; 4. From table 1, for O< Q < 1 — P there are still six points, four
stableE1 2 = (£1,0,0) and Es s that are on the meridiagy = 0, but migrating towards
the point(—1, 0, 0), and two unstableZ; 4, on the equatogs = 0 and moving towards
E; = (—1,0,0) as Q increases. Since the two unstable points have the same energy, these
points are connected by heteroclinic orbits.
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As soon asQ crosses the boundarn® = 1 — P, this configuration is broken, for the
points E3 4 merge into the poink,, a pitchfork bifurcation occurs, and there are only four
equilibria, three of them stablés; = (1, 0, 0) and Es g whereas the poink,; = (-1, 0, 0)
has changed its stability and now is unstable. Let us remembéndbg theorenfor vector
fields on manifoldsthe sum of the indices of the fixed points equals the Euler characteristic
of the manifold(see e.g. [26,27]). In our case, the Euler characteristic of the sphere is
two, and consequently, the number of stable points minus the number of unstable equilibria
must be equal to two). From this unstable point two homoclinic orbits spring, each one
encircling one of the stable poin#ss e.

As Q approaches the valu@ = 1, these homoclinic orbits are collapsing towards the
point E,, and atQ = 1, the two equilibriaE's g coincide with E, that now becomes stable,
through a pitchfork bifurcation. Fo@ > 1 the phase flow consists on rotations around the
two stable equilibriak; and E».

5. Rotor with constant rotation around the largest axis of inertia

When the rotor is moving around the adig, the internal moments; = a, = 0, and thus,
the Hamiltonian (12) is reduced to

H= %(01512 + 612522 + a3§§) — azuas.

Analogously to the preceding case, this Hamiltonian may be put in the form (15). Indeed,
taking into account that the variabléslie on the unit sphere (13), we may elimingte
and the Hamiltonian becomes

H =3 ((a1 — a2)&f + (a3 — az)€5) — azaska.

By defining the dimensionless parameters

p_BT9%2 g Qz—asota
ap —az ay —a
and by making a time scaling transformation, the Hamiltonian for this case is
H =365+ P& + 0k (17)

that is to say it is equivalent to (15), since the variables appear in the same cyclic
permutation, which is necessary because of the structure of their Poisson brackets.
The equations of the motion corresponding to this Hamiltonian are

£1=(Q +&)&
£ = —(Q + & — P&)E

§3 = —P&1&.
By defining now the mapping
(M, v, w) — (535 Sla 52)

the equilibria, the domain where they exist and the energy at them are those appearing on
table 1.

To analyse the phase flow, we have to bear in mind that the parameter i® roW.
From the partition of the parametric plane (figure 1), for a valug?of 0 and when the
parameterQ (that is essentially the rotor moment) ranges from @te- |1 — P|, the phase
portrait is completely analogous to the one described above for internal moment around the
axis by, but now, the bifurcations take place around the pd0, —1) rather than around
the point(—1, 0, 0).
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Energy Energy
(b)

Figure 2. Energy plot at the equilibria for two cases)(internal rotations about the smallest
axis of inertia ¢ = 0.4) (b) internal rotations about the largest axis of inertia £ —0.4).
Broken curves represent unstable positions.

In the present case, for a given value Bf < 0, when 0 < Q < 1, the points
E1=(0,0,1), E; = (0,0, -1), E34 = (+y/1— Q%/(P —1)2,0, Q/(P — 1)) are stable,
whereas the point&ss = (0, /1 — 02, —Q) are unstable, and since the energy at these
unstable points is the same, they are connected by heteroclinic orbitg) #&sproaches
the valueQ = 1, the unstable points are moving towards the pdipt and atQ = 1,
the three points K56, E2) merge intoE, that becomes unstable, and a second pitchfork
bifurcation occurs. FopQ approaching the valugd — P|, the stable point&s 4 are close to
the unstable equilibriunk,, and forQ = |1 — P|, the three collapse int&,, that becomes
stable through a pitchfork bifurcation.

6. Rotor with constant rotation around the intermediate axis of inertia

When there are only rotor moments around the intermediate axis of irgttithe two
remaining rotor moments awe, = oz = 0, and the Hamiltonian (12) is now reduced to

H = (i8] + a2 + azgl) — azaoby.
Again, by using the constraint (13), we may elimingie and the Hamiltonian (after the
corresponding time scaling) becomes

H = 365 + ;PEL + 06 (18)
where the dimensionless paramet&sand Q are now

az —dax —aza?

P =

>1 0= .
az —ax a —a,

This Hamiltonian (18) has the same form that the one studied by Lanchares and Elipe [25],

simply by making

(, v, w) — (&2, &3, 61)

and restricting our analysis to the interval<l P < co. The equilibria, and the domain
where they are defined are those of table 1. The phase flow when the par@eatelves
is depicted in figure 5.

From the partition of the parametric plane (figure 1), for a valuePof> 1, there
are either six, four or two equilibria in the phase flow, depending on which region the
parameterQ is. WhenQ < P — 1 andQ < 1, there are six equilibria; four of them

are stableiEz 4 = (0, Q/(P — 1), +/1— Q?/(P — 1)?), Esg = (/1 — 02 —0,0); and
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Q=03
Q=06
Q=09
Q=11

Figure 3. Phase portrait for internal rotations about the smallest axis of ineftie: (1, a; = 0.7,
az = 0.5 or P = 0.4) for several values o). The left column is the view from the point
E1 = (1,0, 0), the right column is the view from the poif, = (—1,0,0). The phase flow
evolution is made first through a pitchfork bifurcation&t for 0 = 0.6 and secondly through
another pitchfork bifurcation ak» for 0 = 1.

the two remainingt; = (0,0, 1) and E, = (0, 0, —1) are unstable (let us recall the index
theorem again). Since the energies at these two last points is different to one another, they
are not connected by a heteroclinic orbit, but from the pd&ntemanate two homoclinic

orbits encircling the point¥'s 4 whereas fromE, emanate two homoclinic orbits encircling

the pointsEs .
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Ener;
&y Energy
1.5 El
 OE34
o.s-.:"
“-~«._E2
0.2 O T—geds 1 1.2
E5,6
~0.5

Figure 4. Energy plot at the equilibria for internal rotations about the intermediate axis of inertia
(@) P =15 and p) P = 2.5. Broken curves represent unstable positions.

Let us remember that fo@ = 0 (that is to say, for the rigid body problem) there are
six points, four of them stable, the intersection of the sphere with the positive and negative
directions of the axeB; andbs (Ese and E3 4 in our notation) and two unstabl&{ ; at the
extrema of+b;), joined by two heteroclinic orbits. As soon &s= 0 this configuration is
broken and the one described above appears, that we dtdri@d ball configuration [28].

As Q increases, the lobes encircling the stable points shrink towards its respective
unstable points: point&3 4 move towardst; and pointsEs ¢ move towardsz,. Depending
on the interval in whichP is located one pair of the stable points will arrive before the other
pair to the respective unstable point. Ii<1P < 2, the pointsEs 4 will gain this particular
race and will collapse withE; that now becomes stable through a pitchfork bifurcation;
when Q reaches the lin@ = 1, the pointsEs ¢ disappear ink, through a second pitchfork
bifurcation and now there are only two stable points, and the phase portrait is made on
rotations around the point8; and E.

In contrast, if P > 2, the situation is the reverse, that is, the first pitchfork bifurcation
occurs at the point,, for the Esg have arrived first at) = 1; the second pitchfork
bifurcation occurs forQ = P — 1 > 1, where the stable point&; 4 merge intoE;, that
now becomes stable.

The caseP = 2 is special, in the sense that the two pitchfork bifurcations take place
simultaneously (forQ = 1), which could be deduced from the equations of the motion.

7. Cases of axial symmetry

It is well known that for the Euler Pointot motion of a rigid body axially symmetric, (for
instancea; = a, > as), there are two isolated equilibria, namely the north and south poles,
and besides, a dense set of equilibria, for all the points of the et are equilibria;
there is a degeneracy.

One can easily visualize this fact by recalling that the phase flow of this problem is
made of the level contour of the energy ellipsoid (that is an ellipsoid of revolution)

H = ja1(E] + &) + 3as&]
on the momentum sphere

i +&+8 =06
The manifold

Ta1(67 + &) + Yasts = h = a1 G?
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Q=03
Q=0.8
Q=1.1

Figure 5. Phase portrait for internal rotations about the intermediate axis of inertia=(1,
ap = 0.7,a3 = 0.5 or P = 1.6666) for several values ad. The left column is the view from
the pointE; = (0, 1, 0), the right column is the view from the poiiit, = (0, —1, 0). The phase
flow evolution is made through two pitchfork bifurcations, onezatand the second one &b.

is tangent to the sphere along the equétoe 0, thus, all points on this circle are equilibria.

The question now is whether the degeneracy will be preserved when a rotor spins about
one of the principal axis of inertia. The answer is that indeed, this degeneracy is kept,
but only when the rotor spins about the direction of the axis of symmetry of the gyrostat.
Otherwise, the degeneracy is broken througlogster bifurcation [29].

Again, the phase flow of an axially symmetric gyrostat in free rotation motion is made
as the level contour of the energy ellipsoid (12) (where eithet a, > az ora; > a, = as
and only one of they; # 0 ) and the momentum sphere (13).

However, by adding one spinning rotor, the centre of the ellipsoid of the revolution is
shifted from the origin, that still is the centre of the sphere. Let us assume, for instance,
that the axis of symmetry is the axdg. In this case, the ellipsoid is

H = Ja1(&] + &) + asts — asasés.



Complete analysis of bifurcations in the axial gyrostat problem 599

This ellipsoid and the sphere are tangents along the small éyete—azaz/(a—1—as), and
therefore, each point belonging to this small circle is an equilibrium. Hence, the effect of
the rotor consists of a displacement of the circle of degeneracy along the axis of symmetry.
When the rotor is spinning about another axis (eitheor b,), the centre of ellipsoid of
revolution is no longer the origin, but one point on the axis of symmetry, and consequently,
the ellipsoid cannot be tangent to the sphere; therefore, the degeneracy is broken.
Let us see it in detail.

Appendix A. Casea; = a; > as

A.1. Rotor with constant rotation around the smallest axis of inertia
Whena; = a, the Hamiltonian (15) is reduced to

H=1E+£)+ 04

since nowP = (az — az)/(ay —az) = 1. The equations of the motion corresponding to this
Hamiltonian are

£1 = —&r63 £, = (Q + &) £3 = — Q6.

For Q = 0, the pointsEsg = (0,0, +1) are stable equilibrium points and besides, the
equatorés = 0 is made of equilibria. However, as soon @s> 0, the degeneracy is
broken. Indeed, of the infinity equilibria on the equator, only two equilibria remain, namely
the pointsk; = (1, 0, 0) that is now stable, and, = (-1, 0, 0) that is unstable. The north
and south poles start their migration towards the stable ggirglong the meridiarg, = 0,

and now they are the stable poings = (—Q,0,+/1— Q02). Thus, the degeneracy

is broken through amyster bifurcation; we may consider the two homoclinics as valves
hinging on E>, with the oyster closing its valves @3 tends to zero (see [29] for details).

As Q increases towards 1, the homoclinics and the equilibria inside them are
approaching the unstable poiit, = (—1,0,0), and atQ = 1, a pitchfork bifurcation
happens, the three points merge irfig that now is stable, and fo@ > 1, the phase
portrait is made of rotations around the akis

A.2. Rotor with constant rotation around the intermediate axis of inertia

Whena; = a, anday = a3 = 0, ap # 0, the situation is analogous to the above studied.
The Hamiltonian (18) is of no ultility, for in this case = +oco (one of the extrema of the
definition domain ofP), however, one can have the equations of motion straightforward
from the equations (14):

&1=—(&2+ Q)& Er = £163 &3 = 0&

where nowQ = —axaz/(a; — az).

For QO = 0 the equilibria set is made of the poinks s = (0, 0, £1), that are stable,
and of the equatog; = 0. Again, as soon a® > 0, the degeneracy is broken through
an oyster bifurcation, but now, the hinging pointi5 = (0, —1, 0) that is unstable; its
oppositeEz = (0, 1, 0) is stable, and the stable poin& s = (0, —Q, /1 — 02?) tends
towards the unstable point &3 increases. AQ = 1, the pitchfork bifurcation disappears
and there are only two equilibrias 4 that are stable, and the phase flow is made of pure
rotations around the axis.
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A.3. Rotor with constant rotation around the largest axis of inertia

In this case, we cannot use the Hamiltonian (17), for now the parameter-oo. However,
from (14) and by imposing that; = a,, anda; = @ = 0, a3 # 0, we obtain the equations
of motion directly from the equations (14):

E1=—(&+ Q)& £r= (&3 + Q)51 £3=0

where nowQ = azaz/(a; — as).

These equations have two stable equilibigs = (0, 0, £1), plus all the points of the
minor circle&s = —Q. Thus, in the present case, the degeneracy of the rigid body (the
equatorés = 0) is not broken as it was in the precedent cases, but it is shifted along the
axis bs.

Appendix B. Casea; > ay = a3

When the symmetry is such thet > a, = as, the influence of the rotor is much analogous

to the previous case considered, and we do not repeat here. Let us say that in this case,
since the axial symmetry is along the aig it is this axis who plays the role that the

axis bz had above. For rotor moment around the axighe degeneracy is maintained, but
shifted to the minor circlé; = Q = a;a1/(a; — asz), whereas for internal moment around
eitherb, or bs, the degeneracy is broken through an oyster bifurcation.
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